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Abstract

An experimental study concerning the frost formation in natural convection subjected to the influence of EHD is

conducted. For the ambient temperature above the sub-freezing point and without the influence of EHD, water vapor

deposited on the surface in the form of small droplets. A significant amount of coalescence of the small droplets is seen

at the early stage of frost formation and the number of droplets increases with the relative humidity, but the size of the

droplets decreases with the rise of the relative humidity. A hexagonal structure is observed as the droplet grew over a

critical size (d > 80 lm). However, when the ambient temperature was below the sub-freezing temperature, the hexa-

gonal structure was not seen because of the lack of droplets coalescence and the frost structure is comparatively uneven.

With the presence of EHD, the ice column is pulled up towards the electrode and the structure is relatively skinny and

fragile. The fragile structure can easily break up and fall off due to the influence of gravity. It was also found that the

electric polarity plays a significant role on the frost growth. For a negative polarity, the frost structure is thinner than

for a positive polarity and the break-off frequency of the ice column is more frequently compared to a positive polarity.

It is likely that this phenomenon is related to the opposite direction of the dielectrophoreic force and the electrostrictive

force at a positive polarity whereas the direction of the dielectrophoreic force and the electrostrictive force are the same

at a negative polarity.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The adhesion of frost on the heat transfer surface is

inevitable if the surface temperature is below the freezing

point. Unfortunately, frost formation usually casts

many negative effects upon the heat exchanger surfaces

such as lower heat transfer coefficients, higher pressure

drops, and system shutdown due to cycling defrosting.

There are many studies concerning the frost forma-

tion in natural convection having plate fin configura-
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tions. For example, Kennedy and Goodman [1] showed

that a quasi-equilibrium state is reached for frost for-

mation about 3 h, and the temperature of the air-frost

interface approaches 0 �C. Moreover, the temperature of

the air-frost interface oscillated around 0 �C. As the

relative humidity is further increased, the period of these

oscillations is shortened. Cremers and Mehra [2] re-

ported that the frost-surface temperature was near or at

the triple-point of water at a high relative humidity of

94%, while the value was slightly below the triple-point

temperature at a low relative humidity of 53%. Fossa

and Tanda [3] found that the deposited mass of frost is

linearly increased with time, and the slope was consid-

erably affected by the relative humidity of the ambient

air, and is marginally affected by the temperature of the
ed.
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Nomenclature

d droplet diameter, m

D electric induction, FVm�2

E electric field, Vm�1

fb electric body force, Nm�3

fs electrostrictive force, Nm�3

fe dielectric force, Nm�3

k thermal conductivity, Wm�1 K�1

RH relative humidity

q electric charge density, Cm�3

t time, s

T temperature, �C
Td dry bulb temperature, �C
T1 ambient temperature, �C
V supplied voltage, (V)

z distance from the surface, m

b isobaric expansion coefficient, K�1

q density, kgm�3

d frost thickness, mm

e dielectric permittivity, Fm�1
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cold plate. Schneider [4] proposed a correlation showing

that the frost thickness was proportional to the square

root of the elapsed time and to the temperature differ-

ence between the frost surface and the cold wall.

Moreover, under the same relative humidity, the frost

thickness was nearly independent of the ambient tem-

perature. Hayashi et al. [5] classified three periods that

characterize the frost formation process under free

convection. Their classification is well recognized and

accepted. For higher surface temperature and the lower

relative humidity, Mao et al. [6] reported a smoother

frost layer and the denser structure inside the frost layer.

Relative to the observations of frost formation in free

convection, there were also many studies pertinent to the

airside performance [7–13]. These results conclude that

larger relative humidity will result in thicker frost layer

and the corresponding heat transfer performance will

deteriorate with elapsed time. In that regard, constantly

defrosting of the heat transfer surface is required in

order to make a thermal system functional. There are

some possible methods to avoid frost formation in heat

exchangers. The most common one is to constantly melt

the frost either by turning off the cold airflow or by

heating with an external heat source or with an internal

hot gas by-pass refrigerant circuit. Apparently, many

drawbacks are accompanied with this method, such as

reduced equipment reliability, significant energy loss,

and loss of operational load. There are also some passive

methods such as employing hydrophilic coating on the

heat transfer surface to reduce the frost formation

[14,15]. However, based on the investigation by Wu and

Webb [15], surface treatment will not help to reduce the

frost formation but may be beneficial in defrosting cycle

because condensate drainage can be easily achieved with

hydrophilic coating.

In addition to the passive defrosting method, an ac-

tive defrosting method that employs EHD (electrohy-

drodynamics) has received some attentions lately.

Influence of EHD on frost formation was first reported

by Schaefer [16] who showed a rapid growth of ice in the

form of whisker-like aggregates in the presence of high
electrical filed. Subsequently, Marshall and Gunn [17]

observed a chaotic growth of ice showing many irregular

branches on the ice crystals under the influence of weak

electric fields. Bartlett et al. [18] discovered that frost

immediately grew and stretched when the electric field

strength was above 500 V/cm, and proposed that the ice

crystals were destroyed because of the attracting force

towards the electrodes. Maybank and Barthakur [19]

conducted an experiment to see the effect of electric field

on the ice crystal growth. Their results indicated a rapid

growth of ice crystals when the applied electric field

strength is above 200 V/cm. The observed crystals are

thinner and more fragile as compared to those grown

without electric field. Munakata et al. [20] utilized a

mesh-like electrode design to suppress the frost forma-

tion on a cold plate. Their results indicated a 30% of

reduction of frost at a supplied voltage of 7.5 kV. He

also suggested that neither the hydrophilic nor the

hydrophobic coatings of the surfaces can effectively re-

duce the frost formation under electric field. Libbrecht

and Tanusheva [21] performed an experimental obser-

vation of the free dendrite growth of ice crystals from

water vapor in supersaturated air. They reported a new

type of dendrite growth instability by electrically en-

hanced diffusion of polar molecules at the dendrite tip.

The nature of this external force demonstrated the

growth instability which led to a rapid growth of ice

needles with a tip velocity of approximately 5–50 times

of the normal dendrite tip velocity without EHD.

Blanford et al. [22] illustrated the influence of EHD on

the frost formation with fin-and-tube heat exchangers.

They found that frost formation decreased by 20% at

low corona current (5 lA and less) but a 120% increase

of frost formation was seen at high corona current (120

lA and more). Molki et al. [23] applied an intermittent

electric field to suppress the amount of frost accumula-

tion on a plate under natural convection. Unexpectedly,

they found a rapid, avalanche-like destruction of the

developed frost crystals under intermittent electric fields.

Furthermore, they found that an intermittent electric

field removed less frost than a continuous one in the
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beginning but the situation is reversed after about one

hour. Besides, higher frequency of the intermittence re-

sulted in more effective removal of the frost.

The aforementioned studies provide some valuable

information about the frost formation under electric

field. However, the existing studies are still far from

successfully implementing the EHD as a defrosting

technique. Accordingly, it is the purpose of this study to

reinforce this objective from fundamental visual obser-

vations. Efforts are focused on the influence of electric

polarity.
2. Experimental setup

Experimental observations of the frost performance

were conducted in an environmental chamber as shown

in Fig. 1. The environmental chamber can control the

ambient conditions in the range of )10 �C6 Td 6 10 �C
and 50%6RH6 90%. Controlled resolution for the dry

bulb temperature is 0.3 �C while the controlled deviation

of the inlet relative humidity at set point is 2%. The inlet

and outlet relative humidities are measured by two

humidity sensors with calibrated uncertainties of 2%
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Fig. 1. Schematic of
(Delta 9861T). The schematic diagram of the experi-

mental air circuit assembly is also shown in Fig. 1.

The test section consisted of an array of vertical

surfaces which were aligned perpendicularly to the air-

flow direction. Detailed configurations of the extended

surface were depicted in Fig. 2. The aluminum alloy 601

was chosen as the base and fin material because of its

relatively high thermal conductivity and rigidity. The fin

is 100 mm long, 100 mm wide, and 2 mm thick. The fins

were mounted vertically on the aluminum alloy block as

shown in Fig. 2. The base block was carefully machined

to have 58 U-grooves. The width and height of the

groove is 2 mm. It should be noticed that a high thermal

conductivity grease (k ¼ 2:1 Wm�1 K�1) was used to

connect the fin and the base material to minimize the

contact resistance. A mean gap distance of 0.05 mm is

assumed between the attached fin and the base alumi-

num block. Actual fin base temperatures were then

corrected from the measured temperatures. To measure

the fin temperature in both directions of transverse and

longitudinal to the airflow, a total of 10 thermocouples

were mounted on one of the fins. Detailed locations of

the thermocouples were shown in Fig. 2. These ‘T’-type

thermocouples were pre-calibrated with a resolution of
st
mple
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Fig. 2. Schematic of the test section and the location of the electrode.
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0.1 �C. To heat up and cool down the fin array, water

glycol was circulated via four drilled holes beneath the

fin base of the aluminum block. A low temperature

thermostat that is capable of providing water glycol at

controlled temperatures of )10 to )20 �C. During the

experiments, water glycol was circulated with a suffi-

ciently high velocity (>1.0 m/s) to maintain the fin base

temperature at a constant level. For various operation
frontal velocities, the thermostat temperature was ad-

justed to keep the variation of the fin base temperature

between inlet and outlet to be less than 0.3 �C. The test

conditions are given as follows:

Ambient dry bulb temperature: )1 and 1 �C.

Ambient humidity: 60% and 80%.

Water glycol temperature at the inlet: )25 �C.
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Base fin temperature: )20 �C.

Supplied DC voltage: )20, 10, 0, 10, and 20 kV.

Frost formulation on the fin was recorded by two

CCD cameras which were placed above and in front of

the fin surface. The image sensor is 1/4 in. image sensor

having 410 K pixels with a scanning system of 525

lines and 60 fields/s. The lenses of the side-view and
Fig. 3. Photos of the frost formation at Ta ¼
front view are Leica P/N 311383 and OLYMPUS

NeoDPlan 10X, respectively. As shown in Fig. 2, the

electrode used in this study consisted of 22 parallel

insulated wires. The diameter of the wire electrode is

1.54 mm with insulated thickness of 0.77 mm. The gap

of the electrodes to the fin surface is 5 mm whereas

the center-to-center distance between wire electrodes is

10 mm.
�1 �C and RH¼ 60% (without EHD).



Fig. 3 (continued)
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3. Results and discussion

Visual observations of the frost formation without

the presence of EHD at T1 ¼ 1 �C and )1 �C at

Tb ¼ �20 �C are schematically shown in Figs. 3 and 4.

The relative humidity for Fig. 3 is 60% whereas is 80%

for Fig. 4. The experiments were performed in a 3-h

period. Notice that the sizes of the represented front-

view and side-view in Figs. 3 and 4 are roughly 1 mm · 1

mm and 2 mm· 2 mm, respectively. More detailed

length scale can also be seen in Fig. 3.

When the test is performed at a relative humidity of

60% at an ambient temperature of ±1 �C, as can be seen

from the figure, for a period t < 1 min, there are hardly

any noticeable changes in the surface. For t ¼ 5 min, one

can see very tiny condensate having hemisphere config-

uration forming on the surface at an ambient tempera-

ture of 1 �C. The small droplets then grew up by mutual

coalescences. All the droplets then froze abruptly near

an elapsed time of 30 min. The suddenly frozen phe-

nomenon is analogous to those reported by Seki et al.
[24] who also indicated a sudden freezing of the droplet

near t ¼ 30 min. Once the frost is formed (t > 30 min),

the coalescence phenomenon of the neighboring ice

column is not seen. Instead, as the ice column grew in

time up to a critical size (around 80 lm), the neighboring

frozen frost may encounter with each other. Conse-

quently, converse to those small droplets showing coa-

lescence phenomenon, the formed ice columns will

squeeze with each other instead of merging into a bigger

one. As a consequence, the squeezed frost changes its

hemisphere shape to hexagon. Once the hexagonal ice

column is formed, the free void space for the airflow to

move around the ice column is considerably reduced.

The water vapor diffusion inside the voids can no longer

take place. A resultant transparent ice layer is formed on

top of the hexagonal structure because of the subsequent

melting and refreezing of the water condensate.

In contrast to the ambient temperature of 1 �C, at an

ambient temperature of )1 �C that is below the subli-

mation temperature, the water vapor deposited on the

surface in the form of frost and gradually grew in time.
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Frost immediately formed on the surface instead of the

super-cooled water condensate then freeze later as

shown in Fig. 3. During the experimental period, neither

droplet condensation nor coalescence of the neighboring

droplet in a form of hemisphere at the early stage of

frost formation is seen at an ambient temperature of )1
�C. As clearly shown in Fig. 4, the water vapor leaving

air will pass directly from gaseous to solid state forming
a porous layer. This layer will in turn cool down the air

adjacent to it. At the early stage of frost formation,

unlike small droplets showing a ‘‘wash of surface phe-

nomenon’’ as they coalescence with one another, some

of the water vapor will penetrate the frost thickness and

diffuse and freeze at the surface. Therefore one can see a

very thin white layer covering the surface. Basically,

the frost formation is analogous to the description of
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Hayashi et al. [5] who classified the frost formation into

the crystal growth period, frost layer growth period, and

frost layer full growth period. Examination of the frost

crystal at the early stage (t < 10 min), the frost crystal

grew mainly in one-dimension as that indicated by

Hayashi et al. [5]. During the frost layer growth period,

the frost structure changes from pure rod type into

feather type crystal. The feather type crystal then grew

into a very uneven surface condition at frost layer full

growth period. Notice that the frost structure is still very

robust irrespective of its unevenness.

As the ambient relative humidity is increased further

to 80%, as shown in Fig. 4, the frost accumulation be-

come more pronounced. For T1 ¼ 1 �C, the number

density of the droplets for RH¼ 80% is apparently

higher than that of RH¼ 60% but the size of the droplet

is comparably smaller for RH¼ 80%. Notice that the

size of the droplet frost grew with time, yet the number

density decreases considerably as it grew further. For

instance, at RH ¼ 80%, the number density exceeds

2500 per mm2 at t ¼ 3 min and the number density
drops sharply to a number density of approximate 100

per mm2 at t ¼ 20 min whereas the mean droplet

diameters grew from 10 to 70 lm.

With the presence of EHD of negative polarity of )5,
)10, and )15 kV at T1 ¼ �1 �C, visual results for

RH¼ 80% vs. t are shown in Fig. 5. At the initial stage

of frost formation (t < 2 min), there was no great dis-

tinction between those with and without EHD. As time

is further increased, one can see a considerable difference

in the number density of frost for those with EHD. For

instance, at t ¼ 5 min and RH¼ 80%, the number den-

sity of the ice column with EHD is only about one third

of those without EHD. However, the rate of the de-

crease in the number density for EHD is not so pro-

nounced as those without EHD. With the presence of

the electric field, the deposited water vapor aligns in the

direction of the electric field. Therefore one can see the

crystal structure showing a relative thin and weak

structure. The fragile structure then is pulled towards

the electrode. Converse to those without EHD showing

a considerable robust configuration, significant amount



Fig. 5. (a) Photos of the frost formation at Ta ¼ �1 �C and RH¼ 80% with negative polarity (front view). (b) Photos of the frost

formation at Ta ¼ �1 �C and RH¼ 80% with negative polarity (side view).
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of the voids under the influence of EHD was seen.

Therefore the water vapor diffusion inside the voids to-

wards the surface is rather easy. This eventually leads to

a better heat exchange of the air and the cold surface. As

a consequence, the surface temperature with EHD is

roughly 1–2� higher than that without EHD. With the
presence of EHD, the smaller temperature difference

between the cold surface and the free stream implies a

higher heat transfer coefficient. In addition, because the

frost structure is relatively irregular and rather thin, the

frost structure may not sustain itself from gravity

force as it grows further. Fig. 6 illustrates this break-off
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phenomenon under electric field. Notice that without the

exerted force by the EHD ðV ¼ 0Þ, the break-off phe-

nomenon is not observed. The frequency of the break-off

phenomenon increased with the strength of the applied

electric field and with the increase of relative humidity.
In addition to the test performed at a negative

polarity, visual results for positive polarity of +5, +10,

and +15 kV are shown in Fig. 7. At first sight from the

front view, the frost structure is similar to that of the

negative polarity if the environmental conditions as well



Fig. 6. Schematic showing the break-off of the ice structure under electric field.
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as the applied voltage are identical. However, as we look

into the frost growth from the side view, one can clearly

see the frost growth is comparatively inactive relative to

that of the negative polarity. Despite the break-off

phenomenon of the thin icy structure is still encoun-

tered, the frequency of the growth/break-off phenome-

non is detectably smaller. Accordingly, one can see the

maximum frost thickness under negative polarity is

roughly 30–50% higher than that of the positive polarity

as shown in Fig. 8. Explanations of this phenomenon

can be borrowed the results from the theoretical/exper-

imental study by Zaghdoudi and Lallemand [25] who

performed pool boiling of n-pentane under the influence

of DC electric polarity. As is well known, the electric

forces within the dielectric fluid are given by

fb ¼ qE � 1

2
E2re þ 1

2
E2r q

de
dq

E2

� �
: ð1Þ

The first term on the right-hand side of Eq. (1) is the

Coulomb force exerted on the space electric charge in

the dielectric fluid. The second term is the dielectroph-

oretic force fe that is due to spatial gradient of the

dielectric permittivity and the third term is the electro-

strictive force fs caused by the variation of the dielectric

permittivity as a function of the density and the non-

uniformity of the electric field. By utilizing the temper-

ature variations and the Clausius–Mossotti relation, the

dielectrophoretic force fe and the electrostrictive force fs
can be expressed respectively as [25]:

fe ¼
2ðe � e0Þ

3e

"
� @e

@T

� �
q

þ bðe � e0Þðe þ 2e0Þ
3e0

#

	 E2 dT
dz

z; ð2Þ
fs ¼
ðe � e0Þðe þ 2e0Þ

6e0e2
dD2

dz
z; ð3Þ
where D is the electric induction, b is the isobaric

expansion coefficient, and the subscript 0 denotes the

reference state. Since the permittivity decrease with the

temperature, therefore the dielectrophoretic force fe is

directed from the cooling surface towards the electrode.

In the meanwhile, fs is a function of the electric induc-

tion gradient and is related to the polarity of the applied

electric field. For a negative polarity, the direction of fs
and fe is the same whereas the direction is opposite at a

positive polarity [25]. Therefore, in a positive polarity,

the resultant electric force is offset by the electrostrictive

force fs, thereby suppressing the pulled frost structure

towards the electrode.
4. Conclusion

An experimental study concerning the frost forma-

tion in natural convection with the influence of EHD is

conducted. Based on the present visualizations and

measurements, the following conclusions are made:

(1) For an ambient temperature above the sub-freezing

point and without the influence of EHD, water vapor

deposited on the surface in the form of condensate

droplets. A significant amount of coalescence of the

small droplet is seen at the early stage of frost forma-

tion (t < 30 min). The number of droplets increases

with the relative humidity but the size of the droplets

decreases with the rise of the relative humidity. A

hexagonal structure is observed as the droplet grew

over a critical size (d > 80 lm). However, when the



Fig. 7. (a) Photos of the frost formation at Ta ¼ �1 �C and RH¼ 80% with positive polarity (front view). (b) Photos of the frost

formation at Ta ¼ �1 �C and RH¼ 80% with positive polarity (side view).
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ambient temperature was below the sub-freezing

temperature, the hexagonal structure was not seen

because the lack of droplet condensation and coales-

cence. The frost structure at sub-freezing tempera-

ture is comparatively uneven.

(2) With the presence of EHD, the ice columns are

pulled up towards the electrode. The frost structure
has skinny and fragile shape and the weak structure

can easily break up and fall off due to the influence

of gravity.

(3) It is found that the speed of the frost growth and

the break-off frequency of the ice column under

negative polarity is roughly 30–50% higher than

those with the positive polarity. It is likely that this
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phenomenon is related to the opposite direction

of the dielectrophoretic force and the electrostric-

tive force at a positive polarity whereas the direc-

tion of the dielectrophoretic force and the

electrostrictive force are the same at a negative

polarity.
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